
Static enforceability
of XPath-based access
control policies

James Cheney
University of Edinburgh

DBPL 2013
August 30, 2013

Background
• Access control for XML databases

• Read-only

• security views [Stoica & Farkas 2002, Fan et al. 2004]

• filtering [Luo et al. 2004]

• annotations [Yu et al 2004, ...]

• static analysis [Murata et al 2006]

• Access control in presence of updates: less studied

• annotations [Koromilas et al. 2009]

• schema-based [Bravo et al. 2007, 2012]

What about updates?
• Security views

• require solving view update problems

• Dynamic enforcement

• by filtering - inappropriate for updates (unpredictable)

• by annotations - checks fast but updates require
maintaining annotations

• by queries - no annotations, but expensive checks

• Static enforcement

• no dependence on data, but incomplete

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

insert(n2,T)?

T

matches R1

does not match R4,R5

n17 Allowed

Dynamic

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

update(n17,...)?

matches R3

does not match R4,R5

n17

555-1212

Allowed

Dynamic

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

insert(/patients/patient,T)?T

contained in R1

does not overlap R4,R5

Allowed
n17

Static

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

update(/hospital/nurses/nurse/
phone[text()='123-4567'],...)?

not contained in R3

does not overlap R4,R5

Forbidden
(should be allowed!)

n17

555-1212

Static

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

Static Enforceability of XPath-Based Access Control Policies

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract
We consider the problem of extending XML databases with fine-
grained, high-level access control policies specified using XPath
expressions. Most prior work checks individual updates dynami-
cally, which is expensive (requiring worst-case execution time pro-
portional to the size of the database). On the other hand, static
enforcement can be performed without accessing the database but
may be incomplete, in the sense that it may forbid accesses that
dynamic enforcement would allow. We introduce topological char-
acterizations of XPath fragments in order to study the problem of
determining when an access control policy can be enforced stat-
ically without loss of precision. We introduce the notion of fair
policies that are statically enforceable, and study the complexity of
determining fairness and of static enforcement itself.

1. Introduction
Access control policies for XML documents or databases have been
studied extensively over the past 10 years [1, 6, 8, 9, 12, 20, 21, 24,
26, 29, 32]. Most of this work focuses on high-level, declarative
policies based on XPath expressions or annotated schemas; declar-
ative policies are considered easier to maintain and analyze for vul-
nerabilities than the obvious alternative of storing ad hoc access
control annotations directly in the database itself [13]. However,
this convenience comes at a cost: enforcing fine-grained, rule-based
policies can be expensive, especially for updates. In this paper we
consider the problem of efficient enforcement of access control
policies involving update operations, where permissions are speci-
fied using downward monotone XPath access control rules.

An example of such a policy, specifying the allowed and forbid-
den updates for nurses in a hospital database, is shown in Figure 1.
The policy is parameterized by data values $wn (ward number) and
$uid (user id); these values are available as part of the request so
can be treated as constants.

The first three positive rules specify that nurses may insert data
into any patient records, may update information about patients
in their own ward, and may update their own phone number; the
last two negative rules specify that nurses may not insert or update
treatment elements. Some sample data is shown in Figure 2.

Most prior work on XML access control focuses on controlling
read-access, and access control for read-only XML data is now
well-understood. Some techniques, such as filtering [8, 21] and
security views [12, 20, 29], hide sensitive data by rewriting queries
or providing sanitized views. Other access control techniques rely
for efficiency on auxiliary data structures (such as access control
annotations [19], or “compressed accessibility maps” [32]). Static
analysis has been proposed to avoid dynamic checks [24] or speed
reannotation [19].

However, access control for updates still poses challenges that
previous work on read-only access does not fully address, and XML
databases still typically lack support for fine-grained access control.
Prior work [1, 19] suggests two obvious dynamic approaches to

Nurse($wn, $uid):
R1 : +insert(//patient//⇤, ⇤)
R2 : +update(//patient[@wardNo = $wn]/⇤, ⇤)
R3 : +update(//nurse[@id = $uid]/phone/⇤, text())
R4 : �insert(//⇤, treatment)
R5 : �update(//treatment, ⇤)

Figure 1. Policy example
hospital

patients nursesdoctors

patient ... nurse ...doctor ...

name@wardNo=42 treatment

J. Doe penicillin F. Nightingale

name@id=42 phone

123-4567

n1

n2 n3 n4

Figure 2. Example data

enforcement of write-access control policies: query-based enforce-
ment, analogous to filtering, in which we use the policy rules and
update request to generate Boolean queries that answer “true” if the
update is allowed and “false” if not, and annotation-based enforce-
ment, in which the rules are used to place annotations on the data
indicating which updates are allowed on each node. In annotation-
based enforcement, when an update is performed the annotations
need to be updated to restore consistency with the policy; query-
based enforcement has no such maintenance overhead.

To illustrate, consider the data tree in Fig. 2. Suppose nurse n123

wishes to insert a new patient record represented by an XML
tree T . A client-side program issues an XQuery Update expres-
sion insert T into /hospital/patients. Executing this up-
date yields an atomic update insert(n2, T) where n2 is the node
id of the /hospital/patients node. This update is allowed dy-
namically by the policy, and this can be checked by executing a
query against the database to select those nodes where patient in-
sertion is allowed, or by maintaining annotations that encode this
information for all operations.

Since XPath evaluation is in polynomial time (in terms of
data complexity) [16], both query-based and annotation-based ap-
proaches are tractable in theory, but can be expensive for large
databases. Koromilas et al. [19] found that checking whether an up-
date is allowed is much faster using annotations than using queries,
but even with static optimizations, the overhead of maintaining the
annotations can still be prohibitively expensive for large databases.
Both approaches can in the worst case require a complete traversal

update(/hospital/nurses/nurse/nurse[@id=42]/
phone[text()='123-4567'],...)?

contained in R3

does not overlap R4,R5

Allowed
n17

555-1212

Static

Question
• Static checking is always sound

• all accepted updates are dynamically allowed

• but incomplete:

• but may reject some updates that should be allowed

• Key problem: Given a policy language 𝒫 and update language 𝒰

• When is static checking for updates from 𝒰 against policies from 𝒫
complete ?

• We call this property fairness

• (to avoid confusion with other notions of completeness)

• (but possibly introducing confusion with other notions of fairness...)

This paper
• XPath-based policies

• Policies allow "positive" and "negative" rules

• Simple XACML-style conflict resolution/
default semantics

• Key insight: view update capabilities as
forming basis for a topology

• Then policy is fair if it denotes an open set

Intuition
• Forget XPath for a minute

• suppose we want to control access to (0,1)

• Requests specified by open intervals

• Interval allowed iff contained in policy

0 1
(]
a b

Fairness fails if there is a point
s.t. every covering update

request also goes outside P

P

Background
• XPath expressions

• Atomic updates

• Update capabilities

of the database; in practice, Koromilas et al. [19] found that in-
cremental maintenance of annotation-based enforcement requires
a few seconds per update even for databases of modest size.

This strongly motivates an alternative approach that avoids any
dependence on the actual data: static analysis of the rules and up-
dates to check whether a proposed update is allowed [24]. This
approach draws upon exact static analysis algorithms for intersec-
tion [17] and containment [22] of downward XPath. Intersection is
decidable in polynomial time, but containment for expressive frag-
ments of XPath can be intractable in the size of the path expressions
involved; even so, for a fixed policy such tests could still be much
faster than dynamic enforcement, because they depend only on the
policy and update size, not that of the data.

To illustrate via our running example, instead of checking the
actual atomic update against the actual data, we can consider a
static approach, under the assumption that the database does not
allow atomic updates directly but instead only accepts updates
specified using a high-level update language such as XQuery Up-
date [27]. For example, the user-provided update u could be

insert T into /hospital/patients

In prior work, we have introduced static analyses that provide
a conservative static approximation of the possible effects of an
update [2]. We call such representations update capabilities. In our
approach, the system first approximates u via an update capability

U = insert(/hospital/patients, patient)

Here, the second argument patient indicates the type of node
being inserted, that is, the root label of T . Again, in this case the
access is allowed, since U is contained in the positive rule R1 and
does not overlap with any of the negative rules R4, R5.

However, purely static enforcement may not give the same
results as dynamic enforcement: put another way, for some policies
and updates, it may be impossible to statically determine whether
the update is allowed. Static enforcement would either deny access
in such a case or fall back on dynamic techniques. We call a
policy fair when this is not the case: that is, when purely static
and dynamic enforcement coincide.

For example, if we add a rule �delete(//patient[treatment])
to the example policy in Figure 1, the resulting policy is unfair with
respect to any monotone fragment of XPath, because there is no
way to specify a static update request that guarantees the absence
of a treatment child in the updated patient subtree. Fair poli-
cies are of interest because they can be enforced statically, avoiding
any dependence on the size of the data.

In this paper we consider the fairness problem: given a policy
language and a policy in that language, determine whether the pol-
icy is statically enforceable. We focus on subsets of downward,
unordered, monotone XPath. In this context, downward and un-
ordered refers to the fact that we consider only the self, child and
descendant axes that navigate downward into the tree and are in-
sensitive to order (though our results also apply to ordered trees),
and monotone refers to the fact that we exclude features such as
negative path tests or difference operations, so that all of the XPath
expressions we consider have monotone semantics. We use nota-
tion XP (S), where S is a set of XPath features such as child (/),
descendant (//), filter ([]) or wildcard (⇤) to denote different frag-
ments of downward XPath.

Our key insight is based on a shift of perspective. A conven-
tional view of the semantics of an XPath expression p over a given
tree T is as a set of selected nodes n obtained by evaluating p from
the root of T . Instead, we consider the semantics of p to be the set
of pairs (T, n). We consider the topological spaces generated by
different fragments of XPath. A policy is fair (with respect to up-
dates specified in a given fragment XP) if and only if its semantics

denotes an open set in the topology generated by XP . Intuitively,
the reason for this is that a policy is fair if any update dynamically
allowed by the policy is contained in a statically allowed update
capability. The atomic updates are points of the topological space,
the update capabilities denote basic open sets.

Based on this insight, we first prove that fairness is monotonic
in the fragment XP used for updates: that is, making the XPath
characterizations of updates more precise never damages fairness.
Second, we show that all policies over XP (/,//,⇤) are fair with
respect to XP (/) (or any larger fragment). We show that it is
CONP-complete to decide whether a policy over XP (/,//,⇤,[]) is
fair with respect to XP (/,[]); however, policies that only use filters
in positive rules are always fair. We show that for update operations
with a bounded number of descendant steps, static enforcement is
decidable in polynomial time. We sketch how these results can be
extended to handle policies with attributes and data value tests.

The structure of the rest of this paper is as follows: In Section 2
we review the model of write-access control policies introduced
in prior work. We define fairness and give its topological charac-
terization in Section 3 and present the main results in Section 4.
Section 5 discusses the implications of our results and generaliza-
tions. We conclude with discussions of related and future work in
Sections 6 and 7.

2. Preliminaries
XML trees We model XML documents as unordered, unranked
trees. Let ⌃ be an element name alphabet, � an attribute name
alphabet, and D a data domain. We assume that ⌃, �, and D are
infinite and mutually disjoint. We consider an XML document to be
a tree T = (VT , ET , RT ,�T), where �T : VT ! ⌃](�⇥D)]D
is a function mapping each node to an appropriate label, ET ✓
VT ⇥ VT is the edge relation, and RT is a distinguished node in
VT , called the root node. We distinguish between element nodes
labeled with l 2 ⌃, attribute nodes labeled with attribute-value
pairs (@f, d) 2 � ⇥ D, and data nodes labeled with elements of
d 2 D; attribute and data nodes must be leaves. We do not assume
that an XML DTD or schema is present.

XPath The fragment of downward XPath used in update opera-
tions and policies is defined as follows:

Paths p ::= ↵ :: � | p/p0 | p[q]
Filters q ::= p | q and q | @f = d | true
Axes ↵ ::= self | child | descendant | attribute
Node tests � ::= l | ⇤ | f | text()

Absolute paths are written /p; we often omit the leading slash when
this is obvious from context. Here, l is an element label from ⌃, f is
an attribute name from �, and d is a data value or parameter name.
Wildcard ⇤ matches any element or text node. The expressions are
built using only the child, descendant and attribute axes of XPath
and conditions that test for the existence of paths or constant values
of attributes. We use the standard abbreviated forms of XPath
expressions in examples. For example, /a//b[⇤/@d] abbreviates
/child::a/descendant::b[child::⇤/attribute::d]. We write [[p]](T)
for the set of nodes of a tree T obtained from evaluating XPath
expression p on the root node of T . We also write [[�]] for the subset
of node labels ⌃] (�⇥D)]D matching �. These semantics are
defined in Figure 3, following standard treatments [4, 16, 31].

We write XP (S), for S ✓ {/, ⇤, //, [],=,@}, for the sublan-
guage of the above XPath expressions that includes the features in
S. For example, XP (/,//,=,@) includes /a/b[@c = ”foo”], but not
//a/⇤.

We say that an XPath expression p is contained in another
expression p0 (written p v p0) if for every XML tree T , [[p]](T) ✓
[[p0]](T). We say that two XPath expressions are disjoint if their

[[�]] ✓ ⌃] (�⇥D)]D

[[⇤]] = ⌃
[[l]] = {l}
[[f]] = {(f, d) | d 2 D}

[[text()]] = D

A[[↵]](T) ✓ VT ⇥ VT

A[[self]](T) = {(x, x) | x 2 VT }
A[[child]](T) = ET

A[[descendant]](T) = E+
T

A[[attribute]](T) = {(m,n) | �T (n) = (@f, d)}

P [[p]](T) ✓ VT ⇥ VT

P [[↵ :: �]](T) = {(v, w) 2 A[[↵]](T) | �T (w) 2 [[�]]}
P [[p[q]]](T) = {(v, w) 2 P [[p]](T) | w 2 Q[[q]](T)}
P [[p/p0]](T) = {(v, w) | 9x 2 VT .(v, x) 2 P [[p]](T),

(x,w) 2 P [[p0]](T)}
Q[[q]](T) ✓ VT

Q[[p]](T) = {v | 9w 2 VT .(v, w) 2 P [[p]](T)}
Q[[q and q0]](T) = Q[[q]](T) \Q[[q0]](T)
Q[[@f = d]](T) = {v | 9w.(v, w) 2 ET ,�T (w) = (@f, d)}

Q[[true]](T) = VT

[[p]](T) ✓ VT

[[p]](T) = {v | (RT , v) 2 P [[p]](T)}

Figure 3. Semantics of XP (/,//,⇤,[],=,@)

intersection is empty: that is, for every T , [[p]](T) \ [[p0]](T) = ;.
Otherwise, we say p and p0 overlap.

As for relational queries, containment and satisfiability are
closely related for XPath queries, and both problems have been
studied for many different fragments of XPath. Containment has
been studied for downward XPath expressions (XP (/,//,⇤,[])) by
Miklau and Suciu [22] and for larger fragments by others [3, 25,
30]. Specifically, Miklau and Suciu showed that containment is
CONP-complete for XP (/,//,⇤,[]) and presented a complete, ex-
ponential algorithm and an incomplete, polynomial time algo-
rithm, which is complete in restricted cases. Polynomial algo-
rithms for testing overlap of XPath expressions in the fragment
XP (/,//,⇤,[]) have been studied in [17]; however, both satisfiability
and containment for XPath with child axis, filters and negation is
PSPACE-hard [3], and the complexity of containment increases to
EXPTIME-hard when the descendant axis is added. Containment
for XPath 2.0, which includes negation, equality, quantification, in-
tersection, and difference operations, rapidly increases to EXPTIME
or non-elementary complexity [30].

Atomic Updates We consider atomic updates of the form:

u ::= insert(n, T 0) | update(n, T 0) | delete(n)

where n is a node expression, and T 0 is an XML tree. An insert
operation insert(n, T 0) is applied to a tree T by adding a copy of
T 0 as a child of node n (recall that we consider unordered trees
so the order does not matter). The operation delete(n) deletes the
subtree of n, and likewise the operation update(n, T 0) replaces the
selected node with T 0. We write U(T) for the set of all atomic
updates applicable to the nodes of T . We omit a definition of the
semantics of atomic updates on trees, since it is not necessary for
the results of the paper.

Update Capabilities We consider update capabilities of the form

U ::= insert(p,�) | update(p,�) | delete(p)

[[(+,+,A,D)]](T) = U(T)� ([[D]](T)� [[A]](T))

[[(�,+,A,D)]](T) = [[A]](T)

[[(+,�,A,D)]](T) = U(T)� [[D]](T)

[[(�,�,A,D)]](T) = [[A]](T)� [[D]](T)

Figure 4. Semantics of access control policies as the set of allowed
atomic updates

where p is an XPath expression, and � is a node test constraining
the tree that can be inserted. Intuitively, an update capability de-
scribes a set of atomic update operations that a user is allowed or
forbidden to perform in the context of a given policy. An update
capability is interpreted (with respect to a given tree) as defining a
set of atomic updates:

[[insert(p,�)]](T) = {insert(n, T 0) | n 2 [[p]](T),

�T 0(RT 0) 2 [[�]]}
[[update(p,�)]](T) = {update(n, T 0) | n 2 [[p]](T),

�T 0(RT 0) 2 [[�]]}
[[delete(p)]](T) = {delete(n) | n 2 [[p]](T)}

Access Control Policies Following prior work (e.g. [14, 19]),
we define access control policies P = (ds, cr,A,D) with four
components: a default semantics ds 2 {+,�}, a conflict resolution
policy cr 2 {+,�}, and sets A and D of allowed and denied
capabilities, described by XPath expressions. The default semantics
indicates whether an operation is allowed if no rules are applicable.
The conflict resolution policy resolves conflicts when an operation
matches both a positive rule and a negative rule. The semantics
[[P]] of a policy P = (ds, cr,A,D) is given in Figure 4, defined as
a function from trees T to sets of allowed atomic updates [[P]](T)q.
For example, in the deny–deny case, the accessible nodes are those
for which there is a capability granting access and no capabilities
denying access. Note that the allow–deny and deny–allow cases
are degenerate cases of the other two when A = ; or D = ;
respectively.

Enforcement Models We now define the two enforcement mod-
els: dynamic and static.

Definition 1. An update u is (dynamically) allowed on tree T if
[[u]](T) 2 [[P]](T). An update capability U is statically allowed
provided that for all T 0, we have [[U]](T 0) ✓ [[P]](T 0).

For any policy, if u 2 [[U]](T) ✓ [[P]](T), then clearly u is
dynamically allowed on T . The reverse is not necessarily the case,
depending on the policy and class XP of paths used in update
capabilities.

Definition 2. A policy P is fair with respect to XPath fragment
XP provided that whenever P allows u on T , there exists U
expressible in XP such that u 2 [[U]](T) and P statically allows
U .

Example 1. Fairness depends critically upon the class of paths
that may be used to specify updates. If we consider updates
with respect to XP (/,//,⇤,[]), an example of an unfair policy is
P = (�,�, {delete(/a)}, {delete(/a[b])}). Static enforcement
cannot ever allow a deletion at /a because there is no way (within
XP (/,//,⇤,[])) to specify an update that only applies to nodes that
have no b child. Fairness could be recovered by increasing the ex-
pressive power of updates, for example to allow negation in filters;
however, this makes checking containment considerably more dif-
ficult [3, 25, 30]. On the other hand, constraints such as attribute
uniqueness mean that some policies with filters in negative rules are

[[�]] ✓ ⌃] (�⇥D)]D

[[⇤]] = ⌃
[[l]] = {l}
[[f]] = {(f, d) | d 2 D}

[[text()]] = D

A[[↵]](T) ✓ VT ⇥ VT

A[[self]](T) = {(x, x) | x 2 VT }
A[[child]](T) = ET

A[[descendant]](T) = E+
T

A[[attribute]](T) = {(m,n) | �T (n) = (@f, d)}

P [[p]](T) ✓ VT ⇥ VT

P [[↵ :: �]](T) = {(v, w) 2 A[[↵]](T) | �T (w) 2 [[�]]}
P [[p[q]]](T) = {(v, w) 2 P [[p]](T) | w 2 Q[[q]](T)}
P [[p/p0]](T) = {(v, w) | 9x 2 VT .(v, x) 2 P [[p]](T),

(x,w) 2 P [[p0]](T)}
Q[[q]](T) ✓ VT

Q[[p]](T) = {v | 9w 2 VT .(v, w) 2 P [[p]](T)}
Q[[q and q0]](T) = Q[[q]](T) \Q[[q0]](T)
Q[[@f = d]](T) = {v | 9w.(v, w) 2 ET ,�T (w) = (@f, d)}

Q[[true]](T) = VT

[[p]](T) ✓ VT

[[p]](T) = {v | (RT , v) 2 P [[p]](T)}

Figure 3. Semantics of XP (/,//,⇤,[],=,@)

intersection is empty: that is, for every T , [[p]](T) \ [[p0]](T) = ;.
Otherwise, we say p and p0 overlap.

As for relational queries, containment and satisfiability are
closely related for XPath queries, and both problems have been
studied for many different fragments of XPath. Containment has
been studied for downward XPath expressions (XP (/,//,⇤,[])) by
Miklau and Suciu [22] and for larger fragments by others [3, 25,
30]. Specifically, Miklau and Suciu showed that containment is
CONP-complete for XP (/,//,⇤,[]) and presented a complete, ex-
ponential algorithm and an incomplete, polynomial time algo-
rithm, which is complete in restricted cases. Polynomial algo-
rithms for testing overlap of XPath expressions in the fragment
XP (/,//,⇤,[]) have been studied in [17]; however, both satisfiability
and containment for XPath with child axis, filters and negation is
PSPACE-hard [3], and the complexity of containment increases to
EXPTIME-hard when the descendant axis is added. Containment
for XPath 2.0, which includes negation, equality, quantification, in-
tersection, and difference operations, rapidly increases to EXPTIME
or non-elementary complexity [30].

Atomic Updates We consider atomic updates of the form:

u ::= insert(n, T 0) | update(n, T 0) | delete(n)

where n is a node expression, and T 0 is an XML tree. An insert
operation insert(n, T 0) is applied to a tree T by adding a copy of
T 0 as a child of node n (recall that we consider unordered trees
so the order does not matter). The operation delete(n) deletes the
subtree of n, and likewise the operation update(n, T 0) replaces the
selected node with T 0. We write U(T) for the set of all atomic
updates applicable to the nodes of T . We omit a definition of the
semantics of atomic updates on trees, since it is not necessary for
the results of the paper.

Update Capabilities We consider update capabilities of the form

U ::= insert(p,�) | update(p,�) | delete(p)

[[(+,+,A,D)]](T) = U(T)� ([[D]](T)� [[A]](T))

[[(�,+,A,D)]](T) = [[A]](T)

[[(+,�,A,D)]](T) = U(T)� [[D]](T)

[[(�,�,A,D)]](T) = [[A]](T)� [[D]](T)

Figure 4. Semantics of access control policies as the set of allowed
atomic updates

where p is an XPath expression, and � is a node test constraining
the tree that can be inserted. Intuitively, an update capability de-
scribes a set of atomic update operations that a user is allowed or
forbidden to perform in the context of a given policy. An update
capability is interpreted (with respect to a given tree) as defining a
set of atomic updates:

[[insert(p,�)]](T) = {insert(n, T 0) | n 2 [[p]](T),

�T 0(RT 0) 2 [[�]]}
[[update(p,�)]](T) = {update(n, T 0) | n 2 [[p]](T),

�T 0(RT 0) 2 [[�]]}
[[delete(p)]](T) = {delete(n) | n 2 [[p]](T)}

Access Control Policies Following prior work (e.g. [14, 19]),
we define access control policies P = (ds, cr,A,D) with four
components: a default semantics ds 2 {+,�}, a conflict resolution
policy cr 2 {+,�}, and sets A and D of allowed and denied
capabilities, described by XPath expressions. The default semantics
indicates whether an operation is allowed if no rules are applicable.
The conflict resolution policy resolves conflicts when an operation
matches both a positive rule and a negative rule. The semantics
[[P]] of a policy P = (ds, cr,A,D) is given in Figure 4, defined as
a function from trees T to sets of allowed atomic updates [[P]](T)q.
For example, in the deny–deny case, the accessible nodes are those
for which there is a capability granting access and no capabilities
denying access. Note that the allow–deny and deny–allow cases
are degenerate cases of the other two when A = ; or D = ;
respectively.

Enforcement Models We now define the two enforcement mod-
els: dynamic and static.

Definition 1. An update u is (dynamically) allowed on tree T if
[[u]](T) 2 [[P]](T). An update capability U is statically allowed
provided that for all T 0, we have [[U]](T 0) ✓ [[P]](T 0).

For any policy, if u 2 [[U]](T) ✓ [[P]](T), then clearly u is
dynamically allowed on T . The reverse is not necessarily the case,
depending on the policy and class XP of paths used in update
capabilities.

Definition 2. A policy P is fair with respect to XPath fragment
XP provided that whenever P allows u on T , there exists U
expressible in XP such that u 2 [[U]](T) and P statically allows
U .

Example 1. Fairness depends critically upon the class of paths
that may be used to specify updates. If we consider updates
with respect to XP (/,//,⇤,[]), an example of an unfair policy is
P = (�,�, {delete(/a)}, {delete(/a[b])}). Static enforcement
cannot ever allow a deletion at /a because there is no way (within
XP (/,//,⇤,[])) to specify an update that only applies to nodes that
have no b child. Fairness could be recovered by increasing the ex-
pressive power of updates, for example to allow negation in filters;
however, this makes checking containment considerably more dif-
ficult [3, 25, 30]. On the other hand, constraints such as attribute
uniqueness mean that some policies with filters in negative rules are

Policies
• P = (ds,cr,A,D)

• A = allowed capabilities

• D = denied capabilities

• ds = default semantics (+ or -)

• what to do if no rule applies

• cr = conflict resolution policy (+ or -)

• what to do if both A and D rule applies

Semantics
• Conventional semantics ⟦p⟧(T) =

{n1,...,nk}

• Instead, take ⟪p⟫ = {(T,n) | n ∈ ⟦p⟧(T)}

• a "point" (T,n) is a tree T with a designated
node n

• essentially a "tree pattern" with only child
edges

T
n

Intuition
• Simple case (-,-, A,D) - only "delete(p)"

• policy = positive rules - negative rules.

A
D D

D

Intuition
• Think of ⟪P⟫ as 2-dimensional region

• x-axis: trees, y-axis: atomic updates

T

u P

Intuition
• Basic open sets = sets definable by

update capabilities

P

U

• Openness means each point is in an
open neighborhood contained in P

P

U

Intuition

• Fairness means each atomic update is
contained in an update capability U
contained in P

• (U contained in P == statically allowed)

P

U

Intuition

u

Definition
• P is fair (with respect to updates in 𝒰) if and

only if

• for every (T,u) in ⟪P⟫, there exists U ∈ 𝒰 such that
(T,u) in ⟪U⟫ ⊆ ⟪P⟫

• equivalently:

• P is open in the topology generated by the sets ⟪U⟫

• (note: need to show these sets form a basis, which
they do for all examples we care about)

Results
• We consider two scenarios:

• 𝒫 = XP(/,//,*) (𝒰 = XP(/) or larger)

• All policies are open / fair

• (the basic open sets form a partition)

• 𝒫 = XP(/,//,*,[]) (𝒰 = XP(/,[]) or larger)

• All policies with only positive filters are open/fair

• Checking fairness in general (for 𝒰 = XP(/,[])) is
coNP-complete

XP(/,//,*)

• Key idea: show each path is = to union of
linear path sets (basic open sets)

• The basic open sets partition the space of
(T,n)'s, hence all open sets are also closed

• hence finite boolean combinations are always open

hhpii = {(T, v) | (T,RT , v) 2 P hhpii}
P hh↵ :: �ii = {(T, v, w) | (v, w) 2 A[[↵]](T)}
P hhp/p0ii = {(T, v, w) | 9x 2 VT .(T, v, x) 2 P hhpii,

(T, x, w) 2 P hhp0ii}
P hhp[q]ii = {(T, v, w) 2 P hhpii | (T,w) 2 Qhhqii}

Qhhpii = {(T, v) | 9w 2 VT .(T, v, w) 2 P hhpii}
Qhhq and q0ii = Qhhqii \Qhhq0ii
Qhh@f = dii = {(T, v) | 9w.(v, w) 2 ET ,

�T (w) = (@f, d)}

Figure 5. Reformulated semantics of XP (/,//,⇤,[],=,@)

fair: for example, (�,�, {delete(/a[@b = c])}, {delete(/a[@b =
d])}) is fair.

3. Topological characterization of fairness
For simplicity, we initially limit attention to XP (/,//,⇤,[]) and
update capabilities and policies involving only delete capabilities,
and abuse notation by identifying delete(p) with p, and thinking
of A and D as sets of paths. We adopt an alternative view of the
semantics of paths and policies. Let MTree be the set of pairs
(T, n) where n 2 VT . Such pairs are called marked trees; they are
essentially tree patterns (or twig queries) for XPath expressions in
XP (/,[]). We sometimes also consider doubly marked trees, that
is, structures (T, n,m) with two marked nodes. XPath expressions
and policies can be interpreted as sets of (singly or doubly) marked
trees:

Definition 3. We define the marked tree semantics of absolute
paths hhpii, paths P hhpii, and qualifiers Qhhqii as shown in Fig-
ure 5. The marked tree semantics of policies is defined as hhPii =
{(T, n) | delete(n) 2 [[P]](T)}.

The following lemma summarizes the relationship between the
original and reformulated semantics:

Lemma 1. 1. hhpii = {(T, n) | n 2 [[p]](T)}
2. p v p0 if and only if hhpii ✓ hhp0ii
3. p overlaps p0 if and only if hhpii \ hhp0ii 6= ;.

Moreover, we define the XP -underapproximation of a set S ✓
MTree as ApproxXP (S) =

S
{hhpii | p 2 XP , hhpii ✓ S}. Fair-

ness can be reformulated directly in terms of the underapproxima-
tion operation:

Proposition 1. A policy P is fair with respect to XP if and only if
hhPii = ApproxXP (hhPii).

Proof. For the forward direction, suppose P is fair. First note that
hhPii ◆ ApproxXP (hhPii) holds for any policy since the right-hand
side is a union of sets contained in hhPii. Suppose that (T, n) 2
hhPii. Then since P is fair, there exists a p such that (T, n) 2 hhpii
and hhpii ✓ hhPii. This implies that (T, n) 2 ApproxXP (hhPii).

For the reverse direction, suppose hhPii = ApproxXP (hhPii)
and suppose delete(n) is allowed on T , that is, (T, n) 2 hhPii.
Then there must exist some p 2 XP such that (T, n) 2 hhpii and
hhpii ✓ hhPii. This implies that p is statically allowed, as required
for fairness.

Fairness is obviously preserved by moving to a larger XPath
fragment XP 0:

Corollary 1. If XP ✓ XP 0, then if P is fair with respect to XP
then it is also fair with respect to XP 0.

Recall that a topological space is a structure (X, ⌧) where
⌧ ✓ P(X) is a collection of open sets that contains ; and X ,
and is closed under finite intersections and arbitrary unions. The
complement of an open set is called closed. A basis B for X is
collection of subsets of X such that

S
B = X and whenever

x 2 B1 \ B2, there exists B 2 B such that x 2 B ✓ B1 \ B2. A
basis B for X gives rise to a topology ⌧B for X , formed by closing
B under arbitrary unions, which we call the topology generated by
B.

We consider topological spaces over the set MTree of marked
trees, and the open sets are generated by the sets hhpii for p in some
fragment XP .

Theorem 1. If {hhpii | p 2 XP} is the basis for a topology ⌧ on
MTree, then a policy P is fair with respect to XP if and only if
hhPii is open in ⌧ .

Proof. If P is fair, then hhPii = ApproxXP (hhPii). Since each hhpii
is a (basic) open set, it is obvious that hhPii is open. Conversely, if
hhPii is open, then hhPii =

S
{Y 2 ⌧ | Y ✓ hhPii}. Thus, it

suffices to show that
S
{Y 2 ⌧ | Y ✓ hhPii} = ApproxXP (hhPii).

The ◆ direction is immediate since every hhpii is a basic open set.
For ✓, suppose x 2

S
{Y 2 ⌧ | Y ✓ hhPii}, that is, for some

Y 2 ⌧ with Y ✓ hhPii, we have x 2 Y . Any open set Y is the
union of basic open sets, so x must be in some hhpii ✓ Y ✓ hhPii.
Hence x 2 ApproxXP (hhPii).

4. Main results
In this section we investigate fairness for different classes of poli-
cies. We first consider the simpler case of XP (/,//,⇤) policies and
show that they are always fair with respect to XP (/). Next, we con-
sider fairness for XP (/,//,⇤,[]) policies with respect to XP (/,[])

updates, and show that they can be unfair only if they involve fil-
ters in negative rules. We then show that deciding fairness for such
policies is CONP-complete, and conclude by discussing how our
results extend to the general case of XP (/,//,⇤,[],=,@).

4.1 Fairness for XP (/,//,⇤) policies

We call elements of XP (/) linear paths, and usually write them as
↵,�. For policies over XP (/,//,⇤), we consider the basis given by
linear path sets {hh↵ii | ↵ 2 XP (/)}.

Proposition 2. The linear path sets partition MTree (and hence
also form a basis for a topology on MTree).

Proof. Every point (T, n) 2 MTree is in a linear path set: take p
to be the sequence of node labels along a path leading to n in T .
Moreover, two linear path sets are either equal or disjoint.

Consider the topology ⌧1 = ⌧XP(/) generated by the linear path
sets. Clearly, as for any partition topology, we have:

Proposition 3. ⌧1 is closed under set complement.

Next, we show that any path in XP (/,//,⇤) denotes an open set
in ⌧1, vi an auxiliary definition.

Definition 4. We define the function LP mapping p 2 XP (/,//,⇤)

to a set of linear paths:

LP(self :: �) = {self :: l | l 2 [[�]]}
LP(child :: �) = {child :: l | l 2 [[�]]}

LP(descendant :: �) = LP(child :: ⇤)⇤ · LP(child :: �)

LP(p/p0) = LP(p) · LP(p0)
where S · T stands for {s/t | s 2 S, t 2 T} and S⇤ =

S
n Sn.

XP(/,//,*,[])

• Linear path sets no longer suffice

• /a[b] not open w.r.t. linear path basis

• Instead, consider filter path sets

Proposition 4. For every p 2 XP (/,//,⇤), we have P hhpii =S
{P hh↵ii | ↵ 2 LP(p)}, and hhpii =

S
{hh↵ii | ↵ 2 LP(p)},

hence hhpii is open in ⌧1.

Proof. The first part follows by induction on the structure of p. The
base cases for child :: � and self :: � are straightforward. For a
path descendant :: �, we reason as follows:

P hhdescendant :: �ii
=

[
{(T, n,m) | (n,m) 2 E+

T ,�T (m) 2 [[�]]}

=
[

{(T, n,m) | (n,m) 2 E+
T ,�T (m) = l, l 2 [[�]]}

=
[

{(T, n,m) | (n, n1) 2 ET ,�T (n1) = ↵1, . . . ,

(nk,m) 2 ET ,�T (nk) = ↵k,�T (m) = l, l 2 [[�]]}
=

[
{P hh↵/lii | ↵ 2 ⌃⇤, l 2 [[�]]}

=
[

{P hh↵0ii | ↵0 2 LP(descendant :: �)}

For the fourth equation, observe that for any marked tree (T, n)
there is a (possibly empty) path ↵ formed of labels of nodes leading
from the root of T to n. Conversely, for any ↵ there is a (linear) tree
T and node n such that ↵ is the list of labels of nodes from the root
to n.

If the path is of the form p/p0, then we reason as follows:

P hhp/p0ii
= {(T, n,m) | 9k 2 VT .(T, n, k) 2 P hhpii, (T, k,m) 2 P hhp0ii}
= {(T, n,m) | 9k 2 VT .(T, n, k) 2

[
{P hh↵ii | ↵ 2 LP(p)},

(T, k,m) 2
[

{P hh�ii | � 2 LP(p0)}}
= {(T, n,m) | 9k 2 VT .(T, n, k) 2 P hh↵ii,↵ 2 LP(p),

(T, k,m) 2 P hh�ii,� 2 LP(p0)}
= {(T, n,m) | 9k 2 VT .(T, n, k) 2 P hh↵ii, (T, k,m) 2 P hh�ii,

↵ 2 LP(p),� 2 LP(p0)}
=

[
{P hh↵/�ii | ↵ 2 LP(p),� 2 LP(p0)}

=
[

{P hh↵0ii | ↵0 2 LP(p/p0)}

The second part is immediate since

hhpii = {(T, n) | (T,RT , n) 2 P hhpii}
= {(T, n) | (T,RT , n) 2

[
{P hh↵ii | ↵ 2 LP(p)}}

= {(T, n) | (T,RT , n) 2 P hh↵ii,↵ 2 LP(p)}
=

[
{hh↵ii | ↵ 2 LP(p)}

which is a union of open sets in ⌧1.

Proposition 5. Every XP (/,//,⇤)-policy P denotes an open set in
⌧1.

Proof. Clearly, the sets hhAii, hhDii are open since they are unions
of open sets. Since ⌧1 is closed under complement, the set hhDii is
closed so hhPii is open.

Corollary 2. Every XP (/,//,⇤)-policy is fair with respect to
XP (/).

4.2 Fairness for XP (/,//,⇤,[]) policies
Linear path sets are not rich enough to make all expressions in
XP (/,//,⇤,[]) denote open sets. For example, hha[b]ii is not open
in ⌧1; if it were, then it would be expressible as a (possibly infinite)
union of basic open sets hh↵ii. However, clearly the only ↵ such

that hh↵ii overlaps with hha[b]ii is /a, and hha[b]ii (hhaii. Thus,
updates based on linear paths are not sufficiently expressive for
policies involving filters.

Instead, we generalize to filter paths XP (/,[]). These paths
correspond in a natural way to marked trees (T, n). We adopt a
standard definition of a tree homomorphism h : T ! U as a
function mapping VT to VU such that

1. RU = h(RT), and
2. for each (v, w) 2 ET we have (h(v), h(w)) 2 EU , and
3. for each v 2 VT we have �T (v) = �U (h(v)).

A marked tree (T, n) matches a tree U at node m (i.e., matches the
marked tree (U,m)) if there is a tree homomorphism h : T ! U
such that h(n) = m. We refer to such a homomorphism as a
marked tree homomorphism h : (T, n) ! (U,m), and write
hhT, nii for the set of all homomorphic images of (T, n). If p 2
XP (/,[]) corresponds to marked tree (T, n) then it is easy to show
that hhpii = hhT, nii.
Lemma 2. If hhT, nii and hhU,mii overlap, then there is a marked
tree (V, k) such that hhV, kii = hhT, nii \ hhU,mii.

This proof is technical, but straightforward; the details are in an
appendix.

Corollary 3. The sets {hhT, nii | (T, n) 2 MTree} form a basis
for a topology on MTree.

Let ⌧2 be the topology generated by the sets hhT, nii.

Definition 5. The set FP(p) of filter paths of p 2 XP (/,//,⇤,[]) is
defined as

FP(ax :: �) = LP(ax :: �)

FP(p/p0) = FP(p) · FP(p0)
FP(p[q]) = {p0[q0] | p0 2 FP(p), q0 2 FP

Q(q)}
FP

Q(p) = FP(p)

FP

Q(q1 and q2) = {q01 and q02 | q01 2 FP

Q(q), q02 2 FP

Q(q0)}
FP

Q(true) = {true}

Proposition 6. For every p 2 XP (/,//,⇤,[]), we have P hhpii =S
{P hhp0ii | p0 2 FP(p)}, and Qhhqii =

S
{Qhhq0ii | q0 2

FP

Q(q)}, hence hhpii is open in ⌧2.

Proof. We show by induction that for every p 2 XP (/,//,⇤,[]),
we have P hhpii =

S
{hhp0ii | p0 2 FP(p)}. The base cases are

as in Prop. 4. The inductive step case for p/p0 is straightforward,
following the same idea as in Prop. 4. We give the inductive case
for p[q] as follows.

P hhp[q]ii
= {(T, n,m) | (T, n,m) 2 P hhpii, (T,m) 2 Qhhqii}
= {(T, n,m) | (T, n,m) 2

[
{P hhp0ii | p0 2 FP(p)},

(T,m) 2
[

{Qhhq0ii | q0 2 FP

Q(q)}}

= {(T, n,m) | (T, n,m) 2 P hhp0ii, p0 2 FP(p),

(T,m) 2 Qhhq0ii, q0 2 FP

Q(q)}
= {(T, n,m) | (T, n,m) 2 P hhp0ii, (T,m) 2 Qhhq0ii,

p0 2 FP(p), q0 2 FP

Q(q)}
=

[
{{(T, n,m) | (T, n,m) 2 P hhp0ii, (T,m) 2 Qhhq0ii} |

p0 2 FP(p), q0 2 FP

Q(q)}

XP(/,//,*,[])

• Again, all paths denote open sets (taking filter
path sets to be open)

• But complements not necessarily open

• /a[b] open, but not /a - /a[b]

• "can witness presence of b but not absence"

• Proof: filter path sets are closed under
homomorphisms, and /a - /a[b] is not

• (NB. Adding negation /a[not(b)] would help but
make containment much harder.)

Complexity of
fairness

• Question: Given policy P over XP(/,//,*,[]),
is it fair (w.r.t 𝒰 = XP(/,[]))?

• Hardness:

• Reduce from coNP-hardness of Path
containment (Miklau & Suciu 2004)

• p ⊑ p' ⟺ /*[p] - /*[p'] open (in fact empty)

• ⟺ (-,-,{/*[p]},{/*[p']}) fair

Complexity of
fairness

• Upper bound: need to show that unfairness
has a small (polynomial size)
counterexample

• Basic idea: similar to coNP argument for
XPath containment [Miklau & Suciu 2004]

• assume a witness is given (consisting of T, T'
and homomorphism)

• shrink to polynomial-size while preserving
witness property

Complexity of
enforcement

• In general, enforcing policy statically requires
solving

• overlap: PTIME for XP(/,//,*,[])

• containment: coNP-complete for XP(/,//,*,[])

• However, p ⊑ p' can be solved in PTIME if p has
a bounded number of // steps

• i.e. if we restrict updates to have small number of //
steps (which is reasonable).

• again, drawing on Miklau & Suciu's results

Extensions
• Attributes

• seem straightforward but need to take uniqueness into
account

• negative attribute filters may be OK & would be useful

• Schemas

• complicates containment, overlap tests

• Richer classes of XPath-based capabilities & policies

• increasing expressiveness typically makes fairness easier
(cf. negation) but increases complexity of static analysis

Conclusions
• Fine-grained XML access control can be

expensive to enforce dynamically

• In general, static enforcement is incomplete

• Fortunately, it is complete in common cases

• polynomial time static enforcement also possible

• checking fairness can be expensive in general

• Analysis of policy fairness problem reveals an
interesting connection between topology

• should be applicable to other settings also

