Static enforceability
of XPath-based access

control policies

James Cheney
University of Edinburgh

DBPL 2013
August 30, 2013

Background

e Access control for XML databases
e Read-only
e security views [Stoica & Farkas 2002, Fan et al. 2004]
e filtering [Luo et al. 2004]
e annotations [Yu et al 2004, ...]
e static analysis [Murata et al 2006]
e Access control in presence of updates: less studied

e annotations [Koromilas et al. 2009]

What about updates?

e Security views

e require solving view update problems

e Dynamic enforcement

e Dby filtering - inappropriate for updates (unpredictable)

e Dby annotations - checks fast but updates require
maintaining annotations

e Dby queries - no annotations, but expensive checks

e Static enforcement

e no dependence on data, but incomplete

. Dynamic

hospital

i

patlents doctors NUYSES eceecccemmcimcecceeme e e enaas,
/\ /\ / \ msert(nz,T)
patient . doctor nurse
@wardNo=42 name tregtment @id=42 name phone
J. Doe penicillin F. Nightingale 123-4567

Nurse($wn, Suid):

Ry« —|—insert(//patient//>x<,*?> matches R
R : ' rdNo = Swn]/*, *)

Rs : Hupdate(//nurse(@id = $uid]|/phone/*, text())

R4 - ——1insert(//*, treatment
R5@ate(//treatm@ does not match R4,R5

. Dynamic

hospital

i

patlents doctors nurses £
/\ /\ /\ UPdate(n|7,)
patient . doctor nurse
@wardNo=42 name treatment @id=42 name phone
J. Doe penicillin F. Nightingale 555-1212

Nurse(Swn, $uid):

R1: +insert(//patient//*, %)
Ro @ Hupdate(//patient|QwardNo = Swn]/*, *)
Rs

update(/ /nurse [@i\d——‘\$uz’d]/phone/*, text()D matches R3

Ry ——i , t)
Rs —update(//treatmw does not match R4,R5

. Static

hospital

i

patlents doctors nurses
patient .- doctor nurs? ---
/ \\ T // Insert(/patlents/patlent T)7
@wardNo=42 name tregtment Qid=42 name phone niz
J. Doe penicillin F. Nightingale 123-4567

Nurse($wn, $uid)-: : :
R Qsert(//patient//*,D contained in R
Ro @ Hupdate(//patient|[QuardNo = Swn]/*, *)
R3 : Hupdate(//nurse(@id = $uid]/phone/*, text())

R4 - ——1insert(//*, treatment
R5@ate(//treatm@ does not OVGFIGP R4,R5

y Static

hospital

/\

patients doctors nurses
patient .. doctor update(/hospital/nurses/nurse/
/ \\ = shone[text()='123-4567"],..)?
T N
@wardNo=42 name treatment @id=42 name phone
J. Doe penicillin F. Nightingale 555-1212 Forbidden

(should be allowed!)

Nurse(Swn, $uid):
Ry : —|—msert(//pat1ent//>x< %)

RQ . —|—I/£ vfn-| />|< *) . .

R3 < +update(//nurse[@Qid = $uzd]/phone/>s< temOt contained in R3
R4 - ——insert(//*, treatm

Rs\. —update(//treatment, *x) does not OVGFIGP R4,R5

. Static

hospital

/\

patlents doctors nurses

patient S e B! |

update(/hospltallnurses/nurse/nurse[@ld =42]/

phone[text()= 'I2n137 -4567],...)!

@wardNo=42 name treatmerﬁ-: ----------------- 0ided2 name T - [—
J. Doe penicillin F. Nightingale 555-1212

Nurse(Swn, $uid):
Ry : —|—msert(//pat1ent//>x< %)

Ro: +u =-Swnl/x)
Rs ¢ 4update(/ /nurse|@Qid = $uzd]/phone/>|< te@ contained in R3
R4 ~——1insert(/ /*, treatme

—update(/ /treatment, *) does not OVGFIGP R4,R5

Question

Static checking is always sound

all accepted updates are dynamically allowed

but incomplete:

Key problem: Given a policy language & and update language %

but may reject some updates that should be allowed

When is static checking for updates from % against policies from &
complete ?

We call this property fairness

(to avoid confusion with other notions of completeness)

(but possibly introducing confusion with other notions of fairness...)

This paper

e XPath-based policies

e Policies allow "positive" and "negative" rules

e Simple XACML-style conflict resolution/
default semantics

e Key insight: view update capabilities as
forming basis for a topology

e Then policy is fair if it denotes an open set

Intuition

e Forget XPath for a minute

® SuUppose we wan
e Requests specifi

e Interval allowed

/

&

\

Fairness fails if there is a point
s.t. every covering update

request also goes outside P
J

Background

e XPath expressions

Paths p == a:xué|p/p|pl

Filters g == plgandq | true
Axes a = self | child | descendant |
Node tests ¢ == [|x| f|text()

e Atomic updates

U = |) | delete(n)

e Update capabilities
U :.= D, P) | D,) delete(p)

Policies

e P=(ds,cr,A,D)
e A = allowed capabilities
e D = denied capabilities
e ds = default semantics (+ or -)
e what to do if no rule applies

e cr = conflict resolution policy (+ or -)

e what to do if both A and D rule applies

Semantics

e Conventional semantics [pl(T) =
{ni,...,Nk}

e Instead, take <p) = {(T,n) | n € [pl(T)}

e a "point" (T,n) is a tree T with a designated
node n

e essentially a "tree pattern"” with only child
edges
T

o
n

Intuition

e Simple case (-,-, A,D) - only "delete(p)"

e policy = positive rules - negative rules.

Intuition

e Think of {P) as 2-dimensional region

e Xx-axis: trees, y-axis: atomic updates

A

Intuition

e Basic open sets = sets definable by
update capabilities

Intuition

e Openness means each point is in an
open neighborhood contained in P

Intuition

e Fairness means each atomic update is
contained in an update capability U
contained in P

e (U contained in P == statically allowed)

Definition

e Pis fair (with respect to updates in %) if and
only if

e forevery (T,u) in ¢P), there exists U € % such that
(T,u) in KUY C Py

e equivalently:
e Pisopen in the topology generated by the sets <U)

e (note: need to show these sets form a basis, which
they do for all examples we care about)

Results

e Wae consider two scenarios:
o P =XPU:I") (U =XPY or larger)

e All policies are open / fair

e (the basic open sets form a partition)
o P =XPU/5D (4 =XPU:D or larger)
e All policies with only positive filters are open/fair

e Checking fairness in general (for % = XPV:1D) is
coNP-complete

XPU/>//57)

e Keyidea: show each path is = to union of
linear path sets (basic open sets)

LP(self :: ¢) = {self ;1|1 € [¢]}

LP(child :: ¢) = {child:: 1|1 € [¢]}
LP(descendant ::) = LP(child ::)™ - LP(child :: ¢)
LP(p/p") = LP(p)-LP(p")

e The basic open sets partition the space of
(T,n)'s, hence all open sets are also closed

e hence finite boolean combinations are always open

XPU5/ 175D

e Linear path sets no longer suffice

e /a[b] not open w.r.t. linear path basis

o Instead, consider filter path sets
LP(aaz ®)
FP(p) - FP(p')
{p[119" € FP(p), ¢’ € FP2(q)}
FP(p

)
{¢i and ¢5 | ¢ € FPR(q),q5 € FPR(¢)}

= {true}

—I-I
—U
O
Y
S
N—" N N \/ N—"
|

XPU5/ 175D

Again, all paths denote open sets (taking filter
path sets to be open)

But complements not necessarily open
e /a[b]open, but not /a - /a[b]
e 'can witness presence of b but not absence”

Proof: filter path sets are closed under
homomorphisms, and /a - /a[b] is not

(NB. Adding negation /a[not(b)] would help but
make containment much harder.)

Complexity of
falrness

e Question: Given policy P over XPUV.//-51D,
is it fair (w.r.t % = XPV:lD)?

e Hardness:

e Reduce from coNP-hardness of Path
containment (Miklau & Suciu 2004)

e pCp < /*[p]-/*[p'] open (in fact empty)
o —~ (_)_9{/%[p]}9{/%[p']}) fair

Complexity of
falrness

e Upper bound: need to show that unfairness
has a small (polynomial size)
counterexample

e Basicidea: similar to coNP argument for
XPath containment [Miklau & Suciu 2004]

assume a witness is given (consisting of T, T'
and homomorphism)

shrink to polynomial-size while preserving
witness property

Complexity of
enforcement

e In general, enforcing policy statically requires
solving

e overlap: PTIME for XPV://,%1)

e containment: coNP-complete for XPV.//-%L1)

e However, p C p' can be solved in PTIME if p has
a bounded number of // steps

e i.e.if we restrict updates to have small number of //
steps (which is reasonable).

e again, drawing on Miklau & Suciu's results

Extensions

e Attributes

e seem straightforward but need to take uniqueness into
account

e negative attribute filters may be OK & would be useful
e Schemas
e complicates containment, overlap tests
e Richer classes of XPath-based capabilities & policies

e Increasing expressiveness typically makes fairness easier
(ct. negation) but increases complexity of static analysis

Conclusions

Fine-grained XML access control can be
expensive to enforce dynamically

In general, static enforcement is incomplete

Fortunately, it is complete in common cases
e polynomial time static enforcement also possible

e checking fairness can be expensive in general

Analysis of policy fairness problem reveals an
interesting connection between topology

e should be applicable to other settings also

